Problema de ejemplo de la ecuación de Clausius-Clapeyron

La ecuación de Clausius-Clapeyron es una relación nombrada por Rudolf Clausius y Benoit Emile Clapeyron. La ecuación describe la transición de fase entre dos fases de materia que tienen la misma composición..

Por lo tanto, la ecuación de Clausius-Clapeyron se puede usar para estimar la presión de vapor en función de la temperatura o para encontrar el calor de la transición de fase de las presiones de vapor a dos temperaturas. Cuando se grafica, la relación entre la temperatura y la presión de un líquido es una curva en lugar de una línea recta. En el caso del agua, por ejemplo, la presión de vapor aumenta mucho más rápido que la temperatura. La ecuación de Clausius-Clapeyron da la pendiente de las tangentes a la curva.

Este problema de ejemplo demuestra el uso de la ecuación de Clausius-Clapeyron para predecir la presión de vapor de una solución.

Problema

La presión de vapor de 1-propanol es 10.0 torr a 14.7 ° C. Calcule la presión de vapor a 52.8 ° C.
Dado:
Calor de vaporización de 1-propanol = 47.2 kJ / mol

Solución

La ecuación de Clausius-Clapeyron relaciona las presiones de vapor de una solución a diferentes temperaturas con el calor de vaporización. La ecuación de Clausius-Clapeyron se expresa mediante
ln [PT1, vap/PAGT2, vap] = (ΔHvap/ R) [1 / T2 - 1 / T1]
Dónde:
ΔHvap es la entalpía de vaporización de la solución
R es la constante de gas ideal = 0.008314 kJ / K · mol
T1 y T2 son las temperaturas absolutas de la solución en Kelvin
PAGT1, vap y PT2, vap es la presión de vapor de la solución a la temperatura T1 y T2

Paso 1: Convertir ° C a K

TK = ° C + 273,15
T1 = 14,7 ° C + 273,15
T1 = 287.85 K
T2 = 52.8 ° C + 273.15
T2 = 325.95 K

Paso 2: Encuentra PT2, vap

En [10 torr / PT2, vap] = (47.2 kJ / mol / 0.008314 kJ / K · mol) [1 / 325.95 K - 1 / 287.85 K]
En [10 torr / PT2, vap] = 5677 (-4.06 x 10-4 4)
En [10 torr / PT2, vap] = -2.305
tomar el antilog de ambos lados 10 torr / PT2, vap = 0.997
PAGT2, vap/ 10 torr = 10.02
PAGT2, vap = 100.2 torr

Responder

La presión de vapor de 1-propanol a 52.8 ° C es de 100.2 torr.