Ejemplo de intervalo de confianza para una varianza de población

La varianza de la población da una indicación de cómo extender un conjunto de datos. Desafortunadamente, generalmente es imposible saber exactamente qué es este parámetro de población. Para compensar nuestra falta de conocimiento, utilizamos un tema de estadísticas inferenciales llamado intervalos de confianza. Veremos un ejemplo de cómo calcular un intervalo de confianza para una varianza poblacional.

Fórmula de intervalo de confianza

 La fórmula para el intervalo de confianza (1 - α) sobre la varianza de la población. Está dado por la siguiente cadena de desigualdades:

[(norte - 1)s2] / si < σ2 < [ (norte - 1)s2] / UN.

aquí norte es el tamaño de la muestra, s2 es la varianza muestral El número UN es el punto de la distribución chi-cuadrado con norte -1 grado de libertad en el que exactamente α / 2 del área debajo de la curva está a la izquierda de UN. De manera similar, el número si es el punto de la misma distribución de chi-cuadrado con exactamente α / 2 del área debajo de la curva a la derecha de si.

Preliminares

Comenzamos con un conjunto de datos con 10 valores. Este conjunto de valores de datos se obtuvo mediante una muestra aleatoria simple:

97, 75, 124, 106, 120, 131, 94, 97,96, 102

Se necesitaría un análisis exploratorio de datos para mostrar que no hay valores atípicos. Al construir un diagrama de tallo y hoja, vemos que estos datos probablemente provienen de una distribución que se distribuye aproximadamente de manera normal. Esto significa que podemos proceder a encontrar un intervalo de confianza del 95% para la varianza de la población..

Varianza muestra

Necesitamos estimar la varianza de la población con la varianza de la muestra, denotada por s2. Entonces comenzamos calculando esta estadística. Esencialmente estamos promediando la suma de las desviaciones al cuadrado de la media. Sin embargo, en lugar de dividir esta suma por norte lo dividimos por norte - 1.

Encontramos que la media muestral es 104.2. Usando esto, tenemos la suma de las desviaciones al cuadrado de la media dada por:

(97 - 104,2)2 + (75 - 104,3)2 +… + (96 - 104,2)2 + (102-104,2)2 = 2495,6

Dividimos esta suma por 10 - 1 = 9 para obtener una varianza muestral de 277.

Distribución Chi-Square

Ahora pasamos a nuestra distribución de chi-cuadrado. Como tenemos 10 valores de datos, tenemos 9 grados de libertad. Como queremos el 95% medio de nuestra distribución, necesitamos un 2.5% en cada una de las dos colas. Consultamos una tabla de chi-cuadrado o software y vemos que los valores de la tabla de 2.7004 y 19.023 abarcan el 95% del área de distribución. Estos números son UN y si, respectivamente.

Ahora tenemos todo lo que necesitamos y estamos listos para armar nuestro intervalo de confianza. La fórmula para el punto final izquierdo es [(norte - 1)s2] / si. Esto significa que nuestro punto final izquierdo es:

(9 x 277) /19.023 = 133

El punto final correcto se encuentra al reemplazar si con UN:

(9 x 277) /2.7004 = 923

Y por lo tanto, estamos 95% seguros de que la variación de la población se encuentra entre 133 y 923.

Desviación estándar de población

Por supuesto, dado que la desviación estándar es la raíz cuadrada de la varianza, este método podría usarse para construir un intervalo de confianza para la desviación estándar de la población. Todo lo que deberíamos hacer es tomar raíces cuadradas de los puntos finales. El resultado sería un intervalo de confianza del 95% para la desviación estándar..