Una variable aleatoria discreta importante es una variable aleatoria binomial. La distribución de este tipo de variable, denominada distribución binomial, está completamente determinada por dos parámetros: norte y pag. aquí norte es el número de ensayos y pag Es la probabilidad de éxito. Las siguientes tablas son para norte = 2, 3, 4, 5 y 6. Las probabilidades en cada uno se redondean a tres decimales.
Antes de usar la tabla, es importante determinar si se debe usar una distribución binomial. Para utilizar este tipo de distribución, debemos asegurarnos de que se cumplan las siguientes condiciones:
La distribución binomial da la probabilidad de r éxitos en un experimento con un total de norte ensayos independientes, cada uno con probabilidad de éxito pag. Las probabilidades se calculan mediante la fórmula. C(norte, r)pagr(1 - pag)norte - r dónde C(norte, r) es la fórmula para combinaciones.
Cada entrada en la tabla está organizada por los valores de pag y de r. Hay una tabla diferente para cada valor de norte.
Para otras tablas de distribución binomial: norte = 7 a 9, norte = 10 a 11. Para situaciones en las que notario público y norte(1 - pag) son mayores o iguales que 10, podemos usar la aproximación normal a la distribución binomial. En este caso, la aproximación es muy buena y no requiere el cálculo de coeficientes binomiales. Esto proporciona una gran ventaja porque estos cálculos binomiales pueden ser bastante complicados.
Para ver cómo usar la tabla, consideraremos el siguiente ejemplo de genética. Supongamos que estamos interesados en estudiar la descendencia de dos padres que sabemos que ambos tienen un gen recesivo y dominante. La probabilidad de que una descendencia herede dos copias del gen recesivo (y, por lo tanto, tenga el rasgo recesivo) es 1/4.
Supongamos que queremos considerar la probabilidad de que un cierto número de niños en una familia de seis miembros posea este rasgo. Dejar X ser el número de niños con este rasgo. Miramos la mesa para norte = 6 y la columna con pag = 0.25, y vea lo siguiente:
0.178, 0.356, 0.297, 0.132, 0.033, 0.004, 0.000
Esto significa para nuestro ejemplo que
norte = 2
pag | .01 | .05 | .10 | .15 | .20 | .25 | .30 | .35 | .40 | .45 | .50 | .55 | .60 60 | .sesenta y cinco | .70 | .75 | .80 | .85 | .90 | .95 | |
r | 0 0 | .980 | .902 | .810 | .723 | .640 | .563 | .490 | .423 | .360 | .303 | .250 | .203 | .160 | .123 | .090 | .063 | .040 | .023 | .010 | .002 |
1 | .020 | .095 | .180 | .255 | .320 | .375 | .420 | .455 | .480 | .495 | .500 | .495 | .480 | .455 | .420 | .375 | .320 | .255 | .180 | .095 | |
2 | .000 | .002 | .010 | .023 | .040 | .063 | .090 | .123 | .160 | .203 | .250 | .303 | .360 | .423 | .490 | .563 | .640 | .723 | .810 | .902 |
norte = 3
pag | .01 | .05 | .10 | .15 | .20 | .25 | .30 | .35 | .40 | .45 | .50 | .55 | .60 60 | .sesenta y cinco | .70 | .75 | .80 | .85 | .90 | .95 | |
r | 0 0 | .970 | .857 | .729 | .614 | .512 | .422 | .343 | .275 | .216 | .166 | .125 | .091 | .064 | .043 | .027 | .016 | .008 | .003 | .001 | .000 |
1 | .029 | .135 | .243 | .325 | .384 | .422 | .441 | .444 | .432 | .408 | .375 | .334 | .288 | .239 | .189 | .141 | .096 | .057 | .027 | .007 | |
2 | .000 | .007 | .027 | .057 | .096 | .141 | .189 | .239 | .288 | .334 | .375 | .408 | .432 | .444 | .441 | .422 | .384 | .325 | .243 | .135 | |
3 | .000 | .000 | .001 | .003 | .008 | .016 | .027 | .043 | .064 | .091 | .125 | .166 | .216 | .275 | .343 | .422 | .512 | .614 | .729 | .857 |