Al realizar una prueba de significación o prueba de hipótesis, hay dos números que son fáciles de confundir. Estos números se confunden fácilmente porque son números entre cero y uno, y ambas son probabilidades. Un número se llama el valor p del estadístico de prueba. El otro número de interés es el nivel de significación o alfa. Examinaremos estas dos probabilidades y determinaremos la diferencia entre ellas..
El número alfa es el valor umbral con el que medimos los valores p. Nos dice cuán extremos deben ser los resultados observados para rechazar la hipótesis nula de una prueba de significación.
El valor de alfa está asociado con el nivel de confianza de nuestra prueba. A continuación se enumeran algunos niveles de confianza con sus valores relacionados de alfa:
Aunque en teoría y práctica se pueden usar muchos números para alfa, el más comúnmente usado es 0.05. La razón de esto es tanto porque el consenso muestra que este nivel es apropiado en muchos casos, e históricamente, ha sido aceptado como el estándar. Sin embargo, hay muchas situaciones en las que se debe usar un valor menor de alfa. No hay un solo valor de alfa que siempre determine la significación estadística.
El valor alfa nos da la probabilidad de un error tipo I. Los errores de tipo I ocurren cuando rechazamos una hipótesis nula que es realmente cierta. Por lo tanto, a largo plazo, para una prueba con un nivel de significancia de 0.05 = 1/20, una verdadera hipótesis nula será rechazada una de cada 20 veces.
El otro número que forma parte de una prueba de significación es un valor p. Un valor p también es una probabilidad, pero proviene de una fuente diferente a alfa. Cada estadística de prueba tiene una probabilidad correspondiente o valor p. Este valor es la probabilidad de que la estadística observada ocurra solo por casualidad, suponiendo que la hipótesis nula sea verdadera.
Dado que hay varias estadísticas de prueba diferentes, hay varias maneras diferentes de encontrar un valor p. Para algunos casos, necesitamos conocer la distribución de probabilidad de la población..
El valor p del estadístico de prueba es una forma de decir cuán extremo es ese estadístico para nuestros datos de muestra. Cuanto más pequeño es el valor p, más improbable es la muestra observada.
Para determinar si un resultado observado es estadísticamente significativo, comparamos los valores de alfa y el valor p. Hay dos posibilidades que surgen:
La implicación de lo anterior es que cuanto menor es el valor de alfa, más difícil es afirmar que un resultado es estadísticamente significativo. Por otro lado, cuanto mayor es el valor de alfa, más fácil es afirmar que un resultado es estadísticamente significativo. Sin embargo, junto con esto, está la mayor probabilidad de que lo que observamos se pueda atribuir al azar.