Llamado así por los estadísticos estadounidenses David Dickey y Wayne Fuller, quienes desarrollaron la prueba en 1979, la prueba de Dickey-Fuller se usa para determinar si una raíz unitaria (una característica que puede causar problemas en la inferencia estadística) está presente en un modelo autorregresivo. La fórmula es apropiada para series temporales de tendencia, como los precios de los activos. Es el enfoque más simple para probar una raíz unitaria, pero la mayoría de las series de tiempo económicas y financieras tienen una estructura más complicada y dinámica que la que puede capturar un modelo autorregresivo simple, que es donde entra en juego la prueba aumentada de Dickey-Fuller..
Con una comprensión básica de ese concepto subyacente de la prueba Dickey-Fuller, no es difícil llegar a la conclusión de que una prueba Dickey-Fuller aumentada (ADF) es solo eso: una versión aumentada de la prueba Dickey-Fuller original. En 1984, los mismos estadísticos ampliaron su prueba básica de raíz de unidad autorregresiva (la prueba de Dickey-Fuller) para acomodar modelos más complejos con órdenes desconocidas (la prueba de Dickey-Fuller aumentada).
Similar a la prueba original de Dickey-Fuller, la prueba aumentada de Dickey-Fuller es una que prueba una raíz unitaria en una muestra de serie temporal. La prueba se utiliza en investigación estadística y econometría, o en la aplicación de las matemáticas, las estadísticas y la informática a los datos económicos..
El principal diferenciador entre las dos pruebas es que el ADF se utiliza para un conjunto de modelos de series temporales más grande y complicado. La estadística aumentada de Dickey-Fuller utilizada en la prueba ADF es un número negativo. Cuanto más negativo es, más fuerte es el rechazo de la hipótesis de que hay una raíz unitaria. Por supuesto, esto es solo a cierto nivel de confianza. Es decir que si el estadístico de prueba ADF es positivo, uno puede decidir automáticamente no rechazar la hipótesis nula de una raíz unitaria. En un ejemplo, con tres rezagos, un valor de -3.17 constituía un rechazo al valor p de .10.
Para 1988, los estadísticos Peter C.B. Phillips y Pierre Perron desarrollaron su prueba de raíz unitaria Phillips-Perron (PP). Aunque la prueba raíz de la unidad PP es similar a la prueba ADF, la diferencia principal radica en cómo cada prueba maneja la correlación serial. Cuando la prueba PP ignora cualquier correlación en serie, el ADF usa una autorregresión paramétrica para aproximar la estructura de los errores. Por extraño que parezca, ambas pruebas generalmente terminan con las mismas conclusiones, a pesar de sus diferencias.