El momento es una cantidad derivada, calculada multiplicando la masa, metro (una cantidad escalar), multiplicado por la velocidad, v (una cantidad vectorial) Esto significa que el momento tiene una dirección y esa dirección es siempre la misma dirección que la velocidad del movimiento de un objeto. La variable utilizada para representar el momento es pag. La ecuación para calcular el momento se muestra a continuación.
pag = mv
Las unidades de impulso SI son kilogramos por metro por segundo, o kg* *metro/ /s.
Como cantidad vectorial, el momento puede dividirse en vectores componentes. Cuando observa una situación en una cuadrícula de coordenadas tridimensional con direcciones etiquetadas X, y, y z. Por ejemplo, puede hablar sobre el componente de impulso que va en cada una de estas tres direcciones:
pagX = mvX
pagy = mvy
pagz = mvz
Estos vectores componentes se pueden reconstituir juntos usando las técnicas de matemática vectorial, que incluye una comprensión básica de la trigonometría. Sin entrar en los detalles de trigonometría, las ecuaciones vectoriales básicas se muestran a continuación:
pag = pagX + pagy + pagz = mvX + mvy + mvz
Una de las propiedades importantes del impulso y la razón por la que es tan importante al hacer física es que es un conservado cantidad. El ímpetu total de un sistema siempre permanecerá igual, sin importar los cambios que atraviese el sistema (siempre y cuando no se introduzcan nuevos objetos portadores de impulso, es decir).
La razón por la que esto es tan importante es que permite a los físicos realizar mediciones del sistema antes y después del cambio del sistema y sacar conclusiones al respecto sin tener que conocer cada detalle específico de la colisión..
Considere un ejemplo clásico de dos bolas de billar que chocan entre sí. Este tipo de colisión se llama colisión elástica. Uno podría pensar que para descubrir qué sucederá después de la colisión, un físico tendrá que estudiar cuidadosamente los eventos específicos que tienen lugar durante la colisión. Este en realidad no es el caso. En cambio, puede calcular el impulso de las dos bolas antes de la colisión (pag1i y pag2i, donde el yo significa "inicial"). La suma de estos es el impulso total del sistema (llamémoslo pagT, donde "T" significa "total) y después de la colisión: el impulso total será igual a esto, y viceversa. El momento de las dos bolas después de la colisión es pag1f y pag1f, donde el F significa "final". Esto da como resultado la ecuación:
pagT = pag1i + pag2i = pag1f + pag1f
Si conoce algunos de estos vectores de impulso, puede usarlos para calcular los valores faltantes y construir la situación. En un ejemplo básico, si sabes que la bola 1 estaba en reposo (pag1i = 0) y mides las velocidades de las bolas después de la colisión y las usas para calcular sus vectores de momento, pag1f y pag2f, puedes usar estos tres valores para determinar exactamente el momento pag2i debe haber sido. También puede usar esto para determinar la velocidad de la segunda bola antes de la colisión desde pag / / metro = v.
Otro tipo de colisión se llama colisión inelástica, y estos se caracterizan por el hecho de que la energía cinética se pierde durante la colisión (generalmente en forma de calor y sonido). En estas colisiones, sin embargo, el impulso es conservado, por lo que el impulso total después de la colisión es igual al impulso total, al igual que en una colisión elástica:
pagT = pag1i + pag2i = pag1f + pag1f
Cuando la colisión da como resultado que los dos objetos se "peguen", se llama colisión perfectamente inelástica, porque se ha perdido la cantidad máxima de energía cinética. Un ejemplo clásico de esto es disparar una bala contra un bloque de madera. La bala se detiene en la madera y los dos objetos que se movían ahora se convierten en un solo objeto. La ecuación resultante es: