El campo de la estadística se divide en dos divisiones principales: descriptiva e inferencial. Cada uno de estos segmentos es importante, ya que ofrece diferentes técnicas que logran diferentes objetivos. Las estadísticas descriptivas describen lo que está sucediendo en una población o conjunto de datos. Las estadísticas inferenciales, por el contrario, permiten a los científicos tomar hallazgos de un grupo de muestra y generalizarlos a una población más grande. Los dos tipos de estadísticas tienen algunas diferencias importantes..
La estadística descriptiva es el tipo de estadística que probablemente surge en la mente de la mayoría de las personas cuando escuchan la palabra "estadística". En esta rama de la estadística, el objetivo es describir. Las medidas numéricas se utilizan para informar sobre las características de un conjunto de datos. Hay una serie de elementos que pertenecen a esta parte de las estadísticas, como:
Estas medidas son importantes y útiles porque permiten a los científicos ver patrones entre los datos y, por lo tanto, dar sentido a esos datos. Las estadísticas descriptivas solo se pueden usar para describir la población o el conjunto de datos en estudio: los resultados no se pueden generalizar a ningún otro grupo o población.
Hay dos tipos de estadísticas descriptivas que utilizan los científicos sociales:
Las medidas de tendencia central capturan tendencias generales dentro de los datos y se calculan y expresan como la media, la mediana y la moda. Una media le dice a los científicos el promedio matemático de todo un conjunto de datos, como la edad promedio en el primer matrimonio; la mediana representa la mitad de la distribución de datos, como la edad que se encuentra en la mitad del rango de edades en el que las personas se casan por primera vez; y, el modo podría ser la edad más común en la que las personas se casan por primera vez.
Las medidas de propagación describen cómo se distribuyen los datos y cómo se relacionan entre sí, incluyendo:
Las medidas de dispersión a menudo se representan visualmente en tablas, gráficos circulares y de barras, e histogramas para ayudar a comprender las tendencias dentro de los datos..
Las estadísticas inferenciales se producen a través de cálculos matemáticos complejos que permiten a los científicos inferir tendencias sobre una población más grande basándose en el estudio de una muestra tomada de ella. Los científicos usan estadísticas inferenciales para examinar las relaciones entre las variables dentro de una muestra y luego hacen generalizaciones o predicciones sobre cómo esas variables se relacionarán con una población más grande.
Por lo general, es imposible examinar a cada miembro de la población individualmente. Entonces, los científicos eligen un subconjunto representativo de la población, llamado una muestra estadística, y de este análisis, pueden decir algo sobre la población de la que proviene la muestra. Hay dos divisiones principales de estadísticas inferenciales:
Las técnicas que usan los científicos sociales para examinar las relaciones entre variables y, por lo tanto, para crear estadísticas inferenciales, incluyen análisis de regresión lineal, análisis de regresión logística, ANOVA, análisis de correlación, modelación de ecuaciones estructurales y análisis de supervivencia. Al realizar una investigación utilizando estadísticas inferenciales, los científicos realizan una prueba de importancia para determinar si pueden generalizar sus resultados a una población más grande. Las pruebas comunes de importancia incluyen la prueba de ji cuadrado y la prueba t. Estos le dicen a los científicos la probabilidad de que los resultados de su análisis de la muestra sean representativos de la población en su conjunto..
Aunque las estadísticas descriptivas son útiles para aprender cosas como la difusión y el centro de los datos, nada en las estadísticas descriptivas se puede utilizar para hacer generalizaciones. En estadística descriptiva, las medidas como la media y la desviación estándar se expresan como números exactos..
Aunque las estadísticas inferenciales usan algunos cálculos similares, como la media y la desviación estándar, el enfoque es diferente para las estadísticas inferenciales. Las estadísticas inferenciales comienzan con una muestra y luego se generalizan a una población. Esta información sobre una población no se indica como un número. En cambio, los científicos expresan estos parámetros como un rango de números potenciales, junto con un grado de confianza.